The Creative Side of Science

Mozart was quoted posthumously saying that his ideas flowed best and most abundantly when he was taking a walk or alone in bed at night, “and provided I am not disturbed, my subject enlarges itself, becomes methodized and defined, and the whole, though it be long, stands almost finished and complete in my mind, so that I can survey it, like a fine picture or a beautiful statue, at a glance.” Putting it down on paper for Mozart was almost an afterthought, he said, “and it rarely differs on paper from what it was in my imagination.” Wolfgang Amadeus Mozart, Allgemeine Musikalische Zeitung, or “General Music Journal,” in 1815, vol. 17, pp. 561–¬66.

Most of us have heard this or another similar version of Mozart’s creative method; how a symphony or concerto would just appear to him, in its final form. In Peter Schaffer’s 1979 play “Amadeus,” Mozart is portrayed as a foolish prankster with an effortless God-given gift that he plops onto staff paper, whilst his nemesis Antonio Salieri works laboriously day and night on his talentless compositions.

Unfortunately, or fortunately for us mere mortals, this letter is a fake. Mozart’s biographer Otto Jahn proved way back in 1896 that this letter was not only a false representation of Mozart’s process, but that Mozart never wrote it.

Mozart’s real letters — to his father, to his sister, and to others — reveal his true creative process,” writes Kevin Ashton in his book How to Fly a Horse: The Secret History of Creation, Invention, and Discovery. “He was exceptionally talented, but he did not write by magic. He sketched his compositions, revised them, and sometimes got stuck. He could not work without a piano or harpsichord. He would set work aside and return to it later.... His work was exactly that: work.”

A similarly fanciful tale colors our perception of the scientific process. The first “Eureka!” moment is attributed to the Greek mathematician Archimedes, who was charged with the task of determining whether Hiero of Syracuse’’s gold crown was pure gold or an amalgam of gold and silver that his goldsmith was attempting to pass for pure gold. One day while working on this problem, Archimedes noticed how the water level of his bath rose as he submerged himself in it, promptly causing him to exclaim “Eureka!,”” jump out of his bath, and run naked through the streets of Syracuse.

This well-known story does not appear in any of Archimedes' known writings, and is first recorded two hundred years after the fact, in Vitruvius’s Book of Architecture. As such, its accuracy cannot be verified, and chances are, it never happened. We hold onto it, however, because it fits well with our myth of how science works, replete with lone geniuses, toiling away until that fateful “Eureka” moment.

Scientific discovery, just like works of great art, rarely happens in a bold stroke of inspiration, but as the outcome of fits and starts, failures and dead-ends, small successes and gradual conclusions. “Eureka!” is a moment born of a lifetime of effort.

Roald Hoffmann, the 1981 recipient of the Nobel Prize in Chemistry, explained his process to me:

“It is not as romantic, it is always piecewise knowledge, hard-won, and you don't see the totality until a couple of years later, but the process is interesting. There are often not single ‘Aha’ or ‘Eureka’ moments, there are little pieces of understanding that slowly fall into place.”

As with other creative endeavors, doing science is work – hard work. Those of us who’ve ever struggled in an advanced level science course can attest to that. But creative? Hard to imagine. After all, scientists are the epitome of left-brainedness.

So I asked the “Father of String Theory” Leonard Susskind whether he believed his scientific outpourings were creative, he almost instantly ascribed creativity to artists; not to scientists like himself.

"An artist thinks to himself, ‘How do I create something new and different that will excite an aesthetic sense?’. I think for me it's quite different, although I have a very strong aesthetic sense what constitutes a good explanation or a good mathematical explanation of something. Nevertheless, I don't go into a thing saying, ‘Let me create something new.’ I go into a thing saying, ‘How does it work?’”

And yet that kind of thinking is arguably creative by definition.

“When I was a young person, I wanted to do something creative. I wanted to do something new and something nobody else had done or something that I could create. When I was younger I thought of trying to be a composer, a musician, and compose music and compose poetry. Unfortunately, didn't have the talent. I could play the violin, but I couldn't compose original music. I tried poetry and I like poetry, and I like reading it, but I didn't really have a big talent for it. When I got into science I had more of a talent for that. What I tried to do is use my interest in creating something new in science and medicine.” - Kilmer McCully, Chief of Pathology and Laboratory Medicine Services for the United States Department of Veterans Affairs Medical Center and father of the homocysteine theory of cardiovascular disease.

Science mines for and interprets data. This is where creativity comes in. What do I want to know? Is it worth knowing? How could I design a method to find answers to my question? How can I interpret what this data tells me? Creativity is the underpinning behind all stages of the scientific process.

Astronomer Clifford Stoll: “Ask simple questions to start the creative ball rolling, such as ‘‘How does this work?’ And ‘Why?’ Find questions that interest you. Then start digging for answers. In the search for answers, you just might find better questions. And, isn’t that what science is, in the first place?”

Please note: I reserve the right to delete comments that are offensive or off-topic.

Leave a Reply

Your email address will not be published. Required fields are marked *